JEST @ 2022 Jornada Ecology Short Course

## **Introduction to ANOVA-type Linear Mixed Models in R**

Wednesday June 29, 2022 1:00-2:30pm Instructors: Darren James and Greg Maurer

https://jornada-im.github.io/JEST/workshops/20220629-jrn-ecology-short-course/index.html

Goals and objectives

- Review of basic hypothesis testing
  - Adopting a balanced view of p-values
- Fitting ANOVA Linear Models (LMs) in R
- Fitting ANOVA-type Linear Mixed Models (LMMs) in R

Please provide feedback: this is a practice run

- Insufficient time to cover our prepared content
- We intend to offer future workshops on topics of interest

(in approximate order of increasing difficulty)

**Descriptive** – describe or summarize a set of data

**Exploratory** – pattern detection; find relationships not previously known

**Inferential** – use a relatively small sample of data to say something about the population at large

**Predictive** – use current and historical data to make predictions about future data

**Causal** – see what happens to one variable when we manipulate another variable

Mechanistic – understand the exact changes in variables that lead to exact changes in other variables

Credit: The Data Scientist's Toolbox, Johns Hopkins University, coursera.org

#### Hypothesis testing, reviewed

General goal: Assess "significant" differences by ruling out chance/sampling error as a plausible explanation

Null Hypothesis ( $H_0$ ): Hypothesis of no/uninteresting statistical relationship Alternative Hypothesis ( $H_A$ ): Hypothesis of one or more relationship(s) of interest

#### Some examples of null and alternative hypotheses

#### **Global F test for a fixed effect in ANOVA**

 $H_0$ : all levels of the effect have equal means  $H_A$ : at least one of the levels has a different mean than at least one other level

#### **Shapiro-Wilk test for normality**

 $H_0$ : data follow a normal distribution  $H_A$ : data do not follow a normal distribution

## Hypothesis testing: p-values

Software returns a *p-value* for us to interpret

Behind the scenes:

- After defining  $H_0$  and  $H_A$ :
- 1. Identify a test statistic whose distribution under  $H_0$  is known (*t*, *f*,  $X^2$ , etc.)
- 2. Calculate the test statistic for the data
- 3. Compare the test statistic to its distribution under  $H_0$ 
  - Calculate the probability of observing a test statistic more extreme: **p-value**
- If the p-value is sufficiently low (usually 5% or less), reject  $H_0$  in favor of  $H_A$
- If we fail to reject  $H_0$ : proceed as if null hypothesis is true
  - But we haven't actually proven  $H_0$  true; we just acknowledge that our data are consistent with  $H_0$

The p-value has a nuanced and clumsy definition that is easily misunderstood.

- A p-value is the conditional probability of observing a statistic as extreme as or more extreme than the one computed from the current data, across hypothetical repetitions of the experiment.
  - A p-value is not the probability of  $H_0$  being true
  - A p-value is not the probability of falsely rejecting the null hypothesis (i.e. the probability of a Type I error)

Alternative definition: a p-value is the probability of the data given that it was generated under the null hypothesis ( $H_0$ ).

## Toward a more nuanced view of p-values

Point #1: it's impossible to interpret a p-value without knowing the null hypothesis

• Always make sure you have a clear understanding of the null hypothesis

**Point #2**: p-values are conditional probabilities: they are the probability of an event occurring, given that other events have already occurred.

• Conditioned on: the null hypothesis being true; the model; the model's assumptions; the sample size; the experimental design; the sampling methods, the researcher using the software correctly, etc.)

## Is there evidence of a difference?

**Point #3**: there is no "magic" associated with  $p \le 0.05$ .

We often treat p-values as binary (significant/non-significant), but their interpretation is better treated as "continuous" when p is about 0.10 or less.

```
Credit: Ramsey, Fred L. and Daniel W. Schafer. 2013. The Statistical Sleuth: A Course in Methods of Data Analysis, Third Edition. Boston, MA: Brooks/Cole. Display 2.12 p.48
```

## First R exercise: Analysis of Variance (ANOVA)

In ANOVA, the outcome of hypothesis testing for differences in means depends on:

- 1. n: how many samples per group
- **2.** variance in each population:  $\sigma^2$
- 3. effect size: how big is the difference between means?

The three major assumptions of Analysis of Variance (ANOVA):

#### **1. Errors are normal**

- This is the *least important* assumption; ANOVA is often robust to this
- Assess normality of model residuals, not the raw data

## 2. Equal variance in all groups

• Second least important assumption; some degrees of robustness to violations

#### 3. Independent observations

Most important assumption

R Exercise: Use 2017 total estimated ANPP from 15 NPP sites

- 3 sites from each of 5 different vegetation zones
- Question: which vegetation zones are different from each other?

## From Linear Models (LMs) to Linear Mixed Models (LMMs)

The three major assumptions of Analysis of Variance (ANOVA):

- **1. Errors are normal**
- 2. Equal variance in all groups
- 3. Independent observations

Mixed models can handle data that violate #2 and #3:

- Heterogeneous variance (heteroskedascity)
- Correlations between observations (i.e. multi-level or hierarchical structure)

Mixed models accomplish this with random effects

#### Traditional definititions:

**Fixed:** The researcher(s) who who planned the experiment decided which levels to use.

**Random:** Each level can be regarded as a sample from a population of levels.

Key idea: the influence of the random factors are incorporated into the variance of the fixed factors.

- Fixed factors will have the same means as they would in a Linear Model
- But they will likely have higher standard errors because their variance estimates include the variance component(s) from the random effect(s) in addition to σ<sup>2</sup>.

How do we choose between fixed and random?

- Inference considerations
- Structural considerations
- Practical considerations

## Fixed Effects vs. Random Effects

Inference considerations

**Fixed:** Inference is confined to the levels in the experiment **Random:** Inference can be applied to levels not measured in the experiment

Example: study with multiple sites selected in southern NM

- Formulate site as a **fixed** effect: inference is limited to these sites only
- Formulate site as **random** effect: can be basis to apply inference to similar sites in a larger region such as the northern Chihuahuan Desert

#### <u>Structural considerations</u>

Subsamples from the same plot (experimental unit) at the same time ➤ Must formulate plot as random effect to avoid pseudo-replication

Subsamples from the same plot at different times (repeated measures)

- Solution: formulate time as a random effect
- <u>Practical considerations</u>

Random effects don't appear in ANOVA tables Random effects don't consume degrees of freedom

> In practice there can be some flexibility in assigning factors as fixed or random



# The unfortunate naming conventions of linear mixed models

"Mixed"  $\rightarrow$  fixed effects combined with random effects

Always true: mixed models have at least one variance parameter in addition to the usual  $\sigma^2$ .

Linear Model (LM): only  $\sigma^{\,2}$ 

Linear Mixed Model (LMM):  $\sigma^2$  plus at least one more variance estimate.

# Linear model



In matrix form:  $y = X\beta + \varepsilon$ 

What do these matrices look like?

Here's an example:

 $y = X\beta + \varepsilon$ 



The Normal Equations:

 $X'X\beta = X'y$ 

 $\widehat{\boldsymbol{\beta}} = X'(X'X)^{-1}X'y$ Minimizes  $\boldsymbol{\varepsilon}$ 

### **Incorporating random effects #1: the structure of R**

$$y = X\beta + \varepsilon_{R = var\{\varepsilon\}}$$

**R** is a square matrix that describes the variance of the errors according to the grouping structure you specify.

*R* is essentially a table that shows how the groups vary with themselves (variance) and vary with each other (covariance)



# Heterogeneous variances



In linear models, **R** looks like this:

- Equal variance in all groups
- No correlation between groups

$$\mathbf{R} = \begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_1^2 & 0 \\ 0 & 0 & \sigma_1^2 \end{bmatrix}$$

The variance of groups 1 and 2 is the same  $(\sigma_1^2)$ . The variance of group 3 is different  $(\sigma_2^2)$ .

In this case we're not modeling correlations: the off-diagonal values are 0.

# The R matrix in 2 parts: variance and correlation

When fitting Repeated measures LMMs, we are often faced with heterogenous variance in addition to correlation between times

In the **nlme:gls()** function, the variance and correlation are spread across 2 arguments

| Variance: weights = argument<br>weights=varIdent(form=~1 time) |              |              | <br><b>Correlation:</b> correlation = argument<br>correlation = corSymm(form = ~ 1   EU |       |                 | rgument<br>= ~ 1   EU |                 |
|----------------------------------------------------------------|--------------|--------------|-----------------------------------------------------------------------------------------|-------|-----------------|-----------------------|-----------------|
|                                                                | time1        | time2        | time3                                                                                   |       | time1           | time2                 | time3           |
| time1                                                          | $\sigma_1^2$ |              |                                                                                         | time1 | 1               | ρ <sup>12</sup>       | ρ <sup>13</sup> |
| time2                                                          |              | $\sigma_2^2$ |                                                                                         | time2 | ρ <sub>12</sub> | 1                     | ρ 23            |
| time3                                                          |              |              | $\sigma_3^2$                                                                            | time3 | ρ <sub>13</sub> | ρ 13                  | 1               |

These two arguments produce an "Unstructured" covariance structure

- most general structure possible
- useful starting point for selecting covariance structures
- most possible parameters
- not not always estimable; depends on data

Many other correlation structures are available in the nlme package ?nlme::corClasses

| <b>First-order autoregressive</b><br>correlation = corAR1 (form = ~ 1   EU) |       |                |       |                |  |  |
|-----------------------------------------------------------------------------|-------|----------------|-------|----------------|--|--|
|                                                                             |       | time1          | time2 | time3          |  |  |
|                                                                             | time1 | 1              | ρ     | ρ <sup>2</sup> |  |  |
|                                                                             | time2 | ρ              | 1     | ρ              |  |  |
|                                                                             | time3 | ρ <sup>2</sup> | ρ     | 1              |  |  |

- First order autoregressive: observations farther apart in time have lower correlation
- This structure is not appropriate for unequally spaced sampling times.

| <b>Compound symmetry</b><br>correlation = corCompSymm(form = ~ 1   EU) |       |       |       |       |  |  |  |  |
|------------------------------------------------------------------------|-------|-------|-------|-------|--|--|--|--|
| - 35                                                                   |       | time1 | time2 | time3 |  |  |  |  |
|                                                                        | time1 | 1     | ρ     | ρ     |  |  |  |  |
|                                                                        | time2 | ρ     | 1     | ρ     |  |  |  |  |
|                                                                        | time3 | ρ     | ρ     | 1     |  |  |  |  |

 Compound symmetry: constant correlation across times

## Using fit statistics to choose the best covariance structure

Akaike Information Criterion (AIC) : a fit statistic that measures "information loss" between the model and the data

# AIC = - 2\*log likelihood + 2\*(#parameters)

Lesser values closer indicate better fit and greater parsimony.

- → Model with **lowest AIC** has "best" fit
- → Sometimes AIC is negative; "best" model has most negative AIC (not closest to 0)

Other fit statistics: AICC BIC

# Linear Mixed Models

There are **2** general ways to incorporate random effects into a linear model:

#### **1.** Embed the random effects into the structure of the errors

$$y = X\beta + \varepsilon$$
  $var{\varepsilon} = R$ 

This involves structuring R, the variance matrix of  $\varepsilon$ 

- This is called <u>*R-side*</u> modelling
- These models are called *R-side* or *correlated errors* models
- 2. Model the random effects *b* explicitly

$$y|b| = X\beta + Zb + \varepsilon$$

Conditional formulation: **y**, given the random effects **b**  Design matrix for random effects

Solution for fixed effects

# Linear Mixed Models

1. Embed the random effects into the structure of the errors  $(\underline{\textbf{R-side}} \text{ modeling})$  $y = X\beta + \varepsilon$   $var\{\varepsilon\} = R$ 

2. Model the random effects **b** explicitly

$$y(b) = X\beta + Zb + \varepsilon \quad var\{Z\} = G$$

This involves specifying the random effects b, their design matrix Z, and the structure of G, the variance matrix of Z

- This is called <u>G-side</u> modelling
- These models are called *G-side* models

## R-side vs. G-side models

**R-side**: Unmeasured sources of variation

Population-wide inferences Easier for software to profile SAS Proc Mixed: **repeated** statement **nlme::gls()** 

**G-side**: Models variation directly

Subject-specific inferences in addition to population-wide SAS Proc Mixed: **random** statement **nlme::lme()**; **lme4::lmer()** 

- In normal models (LMMs), the R-side vs. G-side difference has little consequence for inference
  - More of a technicality
  - But necessary to help understand model specification in software
  - Both the conditional and marginal distributions are normal
    - Closed under linear transformations
- When we use non-normal distributions this is not the case!

#### ANOVA: estimate variance using Sums of Squares



Mixed Models: estimate variance components using more complicated numerical procedures

- Most common: Restricted Maximum Likelihood (REML)
  - Iterative process that does not always converge
  - Involves a transformation of the data

## Sums of Squares and F-tests

- The are several types of sums of squares
- Darren recommends using F-tests derived from Type III Sums of Squares
- In many R functions, the default is to use Type I

**Type I Tests** shows the additional effect of each variable in the model, so it changes depending on the order of the factors.

**Type III Tests** (aka Partial Sums of Squares) looks at the incremental effect of each term in the model after the other effects have been accounted for.

- Order of the factors in the model is not important.
- Type III are especially important with unbalanced data.
- Appropriate for most use cases

# The linear mixed model equations

$$\begin{bmatrix} X'R^{-1}X & X'R^{-1}Z \\ Z'R^{-1}X & R'R^{-1}Z + G^{-1} \end{bmatrix} \begin{bmatrix} \beta \\ b \end{bmatrix} = \begin{bmatrix} X'R^{-1}y \\ Z'R^{-1}y \end{bmatrix}$$

Use REML to obtain solutions for  $\widehat{\beta}$  and b

Problem: variance estimates of  $\hat{\beta}$  are biased downward because they are estimated after accounting for the random effects

- Standard practice: Some type of adjustment must be implemented to avoid biased variance estimates
- Gold standard: Kenward and Roger adjustment
  - (available for some models with emmeans package)

## Models used for data typically encountered in ecological research

|                          |                                        | Explanatory variables and error structure     |          |                     |                                   |                                          |           |  |
|--------------------------|----------------------------------------|-----------------------------------------------|----------|---------------------|-----------------------------------|------------------------------------------|-----------|--|
| Response                 | Commonly used                          | fixed                                         | 2        | random effects      |                                   |                                          |           |  |
| Variable Type            | distributions                          | categorical                                   | continuo | ous (nor<br>distri  | <b>itional</b><br>mally<br>buted) | correlat                                 | ed errors |  |
| Continuous               | Normal                                 | Linear                                        |          | Linear Mixed Models |                                   |                                          |           |  |
| Symmetric                | (Gaussian)                             | ANOVA AN                                      | Regressi | ion                 | G-side                            |                                          | R-side    |  |
| Categorical              | Bernoulli,<br>Binomial,<br>Multinomial | Logistic Regression Generalized Linear Models |          |                     | Ľ                                 |                                          |           |  |
| Counts                   | Poisson,<br>Negative Bin-<br>nomial    |                                               |          |                     | Ge                                | Generalized<br>Linear<br>Mixed<br>Models |           |  |
| Continuous<br>Proportion | Beta                                   |                                               |          |                     |                                   |                                          |           |  |
| Time to Event            | Exponential,<br>Gamma                  |                                               |          |                     |                                   |                                          |           |  |

#### **Common R packages for fitting LMs, GLMs, LMMs, GLMMS** (not exhaustive)

Linear Models: ANOVA, regression, Analysis of Covariance (ANCOVA)

- stats::lm()
- stats:aov() may provide a more convenient interface for ANOVA

Generalized Linear Models: logistic regression, Poisson regression, etc.

stats::glm()

# Linear Mixed Models:

- nlme::gls()
- nlme::lme()
- Ime4::Imer()
- many others

**Generalized Linear Mixed Models:** 

- Ime4::glmer()
- others