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Goals and objectives
• Review of basic hypothesis testing

• Adopting a balanced view of p-values
• Fitting ANOVA Linear Models (LMs) in R
• Fitting ANOVA-type Linear Mixed Models (LMMs) in R

Please provide feedback: this is a practice run
• Insufficient time to cover our prepared content
• We intend to offer future workshops on topics of interest



Types of Statistical Analysis Objectives    (in approximate order of increasing difficulty)

Descriptive – describe or summarize a set of data

Exploratory – pattern detection; find relationships not previously known

Inferential – use a relatively small sample of data to say something about the population at large 

Predictive – use current and historical data to make predictions about future data

Causal – see what happens to one variable when we manipulate another variable

Mechanistic – understand the exact changes in variables that lead to exact changes in other variables

Credit: The Data Scientist’s Toolbox, Johns Hopkins University, coursera.org 



Hypothesis testing, reviewed

General goal: Assess “significant” differences by ruling out chance/sampling error as a plausible explanation

Null Hypothesis (𝑯𝟎): Hypothesis of no/uninteresting statistical relationship
Alternative Hypothesis (𝑯𝑨): Hypothesis of one or more relationship(s) of interest

Some examples of null and alternative hypotheses

Global F test for a fixed effect in ANOVA
𝐻0: all levels of the effect have equal means
𝐻𝐴: at least one of the levels has a different mean 
than at least one other level

Shapiro-Wilk test for normality
𝐻0: data follow a normal distribution
𝐻𝐴: data do not follow a normal distribution



• Software returns a p-value for us to interpret
Behind the scenes:

After defining 𝐻0 and 𝐻𝐴 :
1. Identify a test statistic whose distribution under 𝐻0 is known (t, f, Χ 2, etc.)
2. Calculate the test statistic for the data
3. Compare the test statistic to its distribution under 𝐻0

• Calculate the probability of observing a test statistic more extreme: p-value

• If the p-value is sufficiently low (usually 5% or less), reject 𝐻0 in favor of 𝐻𝐴
• If we fail to reject 𝐻0: proceed as if null hypothesis is true

• But we haven’t actually proven 𝐻0 true; we just acknowledge that our data are consistent with 𝐻0

Hypothesis testing: p-values

The p-value has a nuanced and clumsy definition that is easily misunderstood.

• A p-value is the conditional probability of observing a statistic as extreme as or more extreme than the one 
computed from the current data, across hypothetical repetitions of the experiment.
• A p-value is not the probability of 𝐻0 being true
• A p-value is not the probability of falsely rejecting the null hypothesis (i.e. the probability of a Type I error)

Alternative definition: a p-value is the probability of the data given that it was generated under the null 
hypothesis (𝑯𝟎).



Toward a more nuanced view of p-values

Point #1: it’s impossible to interpret a p-value without knowing the null hypothesis
• Always make sure you have a clear understanding of the null hypothesis

Point #2: p-values are conditional probabilities: they are the probability of an event occurring, given that other 
events have already occurred.

• Conditioned on: the null hypothesis being true; the model; the model’s assumptions; the sample size; the experimental design; the 
sampling methods, the researcher using the software correctly, etc.)

Point #3: there is no “magic” associated 
with p ≤ 0.05.

We often treat p-values as binary 
(significant/non-significant), but their 
interpretation is better treated as 
“continuous” when p is about 0.10 or 
less.

Credit: Ramsey, Fred L. and Daniel W. Schafer.  2013.  The Statistical Sleuth: A Course in Methods of Data Analysis, Third Edition.  Boston, MA: Brooks/Cole.  Display 2.12 p.48



First R exercise: Analysis of Variance (ANOVA)

The three major assumptions of Analysis of Variance (ANOVA):

1. Errors are normal
• This is the least important assumption; ANOVA is often robust to this
• Assess normality of model residuals, not the raw data

2. Equal variance in all groups
• Second least important assumption; some degrees of robustness to violations

3. Independent observations
• Most important assumption 

R Exercise: Use 2017 total estimated ANPP from 15 NPP sites
• 3 sites from each of 5 different vegetation zones
• Question: which vegetation zones are different from each other?

In ANOVA, the outcome of hypothesis testing for differences in means depends on:
1. n: how many samples per group
2. variance in each population: σ 𝟐

3. effect size: how big is the difference between means?



From Linear Models (LMs) to Linear Mixed Models (LMMs)

Mixed models can handle data that violate #2 and #3:

• Heterogeneous variance (heteroskedascity)
• Correlations between observations (i.e. multi-level or hierarchical structure)

Mixed models accomplish this with random effects

The three major assumptions of Analysis of Variance (ANOVA):

1. Errors are normal
2. Equal variance in all groups
3. Independent observations



Fixed Effects vs. Random Effects

Traditional definititions:

Fixed: The researcher(s) who who planned the experiment decided which levels to use.

Random: Each level can be regarded as a sample from a population of levels.

Key idea: the influence of the random factors are incorporated into the variance of the fixed factors.

• Fixed factors will have the same means as they would in a Linear Model

• But they will likely have higher standard errors because their variance estimates include the variance 
component(s) from the random effect(s) in addition to σ 2.

How do we choose between fixed and random?

• Inference considerations
• Structural considerations
• Practical considerations



Fixed Effects vs. Random Effects
• Inference considerations
Fixed: Inference is confined to the levels in the experiment
Random: Inference can be applied to levels not measured in the experiment

Example: study with multiple sites selected in southern NM

• Formulate site as a fixed effect: inference is limited to these sites only
• Formulate site as random effect: can be basis to apply inference to similar sites in a larger region such as the 

northern Chihuahuan Desert

• Structural considerations
Subsamples from the same plot (experimental unit) at the same time
➢ Must formulate plot as random effect to avoid pseudo-replication

Subsamples from the same plot at different times (repeated measures) 
➢ Solution: formulate time as a random effect

• Practical considerations
Random effects don’t appear in ANOVA tables
Random effects don’t consume degrees of freedom

➢ In practice there can be some flexibility in assigning factors as fixed or random



https://twitter.com/ChedidFabienne/status/1466163176718974979/photo/1

The unfortunate naming conventions of 
linear mixed models

“Mixed” → fixed effects combined with random 
effects

Always true: mixed models have at least one variance 
parameter in addition to the usual σ 2.

Linear Model (LM): only σ 2

Linear Mixed Model (LMM): σ 2 plus at least one 
more variance estimate.

https://twitter.com/ChedidFabienne/status/1466163176718974979/photo/1


Linear model

y = 𝜇𝑖 + e

y = 𝜇 + 𝜏𝑖 + e

observation
(data point)

= group 
mean +

statistical 
noise

𝑖 = group1, group2, group3

overall 
mean + group 

effect

𝒚 = 𝑿𝜷 + 𝜺In matrix form:

overparamaterized:
4 parameters but only 3 groups.

Side condition: σ 𝜏𝑖 = 0)

Means model

Effects model:



𝑦11
𝑦12
𝑦13
𝑦14
𝑦15
𝑦16
𝑦21
𝑦22
𝑦23

=

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1

𝜇
𝜏1
𝜏2
𝜏3

+  

𝑒11
𝑒12
𝑒13
𝑒14
𝑒15
𝑒16
𝑒21
𝑒22
𝑒23

𝒚 = 𝑿𝜷 + 𝜺

What do these matrices look like?  Here’s an example:

2
0
1
4
6
8
9
10
5

=

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1

5
−4
1
3

+    

1
−1
0
−2
0
2
1
2
−3

The Normal Equations:

𝑿′𝑿𝜷 = 𝑿′𝒚

෡𝜷 = 𝑿′(𝑿′𝑿)−1𝑿′𝒚

Minimizes 𝜺

with 
data:

𝒚 𝒚𝑿 𝑿

𝜷 ෡𝜷

𝜺 𝜺



𝑹 is a square matrix that describes the variance of the errors according to the grouping 
structure you specify.

𝑹 is essentially a table that shows how the groups vary with 
themselves (variance) and vary with each other (covariance)

𝒚 = 𝑿𝜷 + 𝜺
𝑹 = 𝑣𝑎𝑟 𝜺

group 

1

group 

2

group 

3

group 1

group 2

group 3

Incorporating random effects #1: the structure of R

Repeated measures models commonly 
use time as the grouping structure



𝑹 =

𝜎1
2 0 0

0 𝜎1
2 0

0 0 𝜎2
2

The variance of groups 1 and 2 is the same (𝜎1
2).

The variance of group 3 is different (𝜎2
2).

Heterogeneous variances

In this case we’re not modeling correlations: the 
off-diagonal values are 0.

𝑹 =

𝜎1
2 0 0

0 𝜎1
2 0

0 0 𝜎1
2

In linear models, R looks like this:
• Equal variance in all groups
• No correlation between groups



The R matrix in 2 parts: variance and correlation

time1 time2 time3

time1 𝜎1
2

time2 𝜎2
2

time3 𝜎3
2

When fitting Repeated measures LMMs, we are often faced with heterogenous variance in addition to 
correlation between times
In the nlme:gls() function, the variance and correlation are spread across 2 arguments

time1 time2 time3

time1 1
ρ 12 ρ 13

time2
ρ 12

1 ρ 23

time3
ρ 13

ρ 13 1

Variance: weights = argument
weights=varIdent(form=~1|time)

Correlation: correlation = argument
correlation = corSymm(form = ~ 1 | EU)

These two arguments produce an “Unstructured” covariance structure
• most general structure possible
• useful starting point for selecting covariance structures
• most possible parameters
• not not always estimable; depends on data



time1 time2 time3

time1 1 ρ ρ

time2
ρ

1 ρ

time3
ρ

ρ 1

Compound symmetry
correlation = corCompSymm(form = ~ 1 | EU)

• First order autoregressive: observations 
farther apart in time have lower correlation

• This structure is not appropriate for 
unequally spaced sampling times.

Many other correlation structures are available in the nlme package   ?nlme::corClasses

time1 time2 time3

time1 1 ρ
ρ
2

time2
ρ

1
ρ

time3
ρ 2

ρ
1

First-order autoregressive
correlation = corAR1 (form = ~ 1 | EU)

• Compound symmetry: constant 
correlation across times



Using fit statistics to choose the best covariance structure

AIC = - 2*log likelihood + 2*(#parameters)

Lesser values closer indicate better fit and greater parsimony.

→ Model with lowest AIC has “best” fit

→ Sometimes AIC is negative; “best” model has most negative AIC (not closest to 0)

Other fit statistics: 

AICC

BIC

Akaike Information Criterion (AIC) : a fit statistic that measures “information loss” 

between the model and the data



𝒚 = 𝑿𝜷 + 𝜺

Linear Mixed Models
There are 2 general ways to incorporate random effects into a linear model:

1.  Embed the random effects into the structure of the errors

This involves structuring 𝑹, the variance matrix of 𝜺
• This is called R-side modelling
• These models are called R-side or correlated errors models

2.  Model the random effects 𝒃 explicitly

𝒚|𝒃 = 𝑿𝜷 + 𝒁𝒃 + 𝜺
Design matrix 

for random 
effects

Solution 
for fixed 
effects

Conditional formulation: 
y, given the random 

effects 𝒃

𝑣𝑎𝑟 𝜺 = R



𝒚|𝒃 = 𝑿𝜷 + 𝒁𝒃 + 𝜺

1.  Embed the random effects into the structure of the errors 
(R-side modeling)

2.  Model the random effects 𝒃 explicitly

This involves specifying the random effects 𝒃, their 
design matrix 𝒁, and the structure of 𝑮, the variance 
matrix of 𝒁

• This is called G-side modelling
• These models are called G-side models

𝑣𝑎𝑟 𝐙 = G

Linear Mixed Models

𝒚 = 𝑿𝜷 + 𝜺 𝑣𝑎𝑟 𝜺 = R



• In normal models (LMMs), the R-side vs. G-side difference has little consequence for inference
• More of a technicality
• But necessary to help understand model specification in software
• Both the conditional and marginal distributions are normal

• Closed under linear transformations

• When we use non-normal distributions this is not the case!

R-side: Unmeasured sources of variation

Population-wide inferences
Easier for software to profile
SAS Proc Mixed: repeated statement
nlme::gls()

G-side: Models variation directly

Subject-specific inferences in addition to population-wide
SAS Proc Mixed: random statement
nlme::lme(); lme4::lmer()

R-side vs. G-side models



ANOVA: estimate variance using Sums of Squares

SSError = SSTotal - SSTreatmentSSTreatment

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠
=

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟
= 𝐹𝑛𝑢𝑚, 𝑑𝑒𝑛𝑜𝑚 → p-value

Divide by degrees 
of freedom

MSTreatment

Divide by degrees 
of freedom

MSError

SSTotal: Sums of Squares under one overall mean
SSTreatment: Sums of Squares under individual group means

Mixed Models: estimate variance components using more complicated numerical procedures
• Most common: Restricted Maximum Likelihood (REML)

• Iterative process that does not always converge
• Involves a transformation of the data



Sums of Squares and F-tests

• The are several types of sums of squares
• Darren recommends using F-tests derived from Type III Sums of Squares
• In many R functions, the default is to use Type I 

Type I Tests shows the additional effect of each variable in the model, so it changes 
depending on the order of the factors.

Type III Tests (aka Partial Sums of Squares) looks at the incremental effect of each term in 
the model after the other effects have been accounted for.  

• Order of the factors in the model is not important.  
• Type III are especially important with unbalanced data.
• Appropriate for most use cases



The linear mixed model equations

𝑿′𝑹−1𝑿 𝑿′𝑹−1𝒁
𝒁′𝑹−1𝑿 𝑹′𝑹−1𝒁 + 𝑮−1

𝜷
𝒃

=
𝑿′𝑹−1𝒚

𝒁′𝑹−1𝒚

Use REML to obtain solutions for ෡𝜷 and 𝒃

Problem: variance estimates of ෡𝜷 are biased downward because they are estimated after 
accounting for the random effects

• Standard practice: Some type of adjustment must be implemented to avoid biased 
variance estimates

• Gold standard: Kenward and Roger adjustment
• (available for some models with emmeans package)



Models used for data typically encountered in ecological research

Response 
Variable Type

Commonly used 
probability 

distributions

Explanatory variables and error structure

fixed effects random effects

categorical continuous
conditional 

(normally 
distributed)

correlated errors

Continuous 
Symmetric

Normal                         
(Gaussian)

Categorical
Bernoulli,                 
Binomial,                

Multinomial

Counts
Poisson,                     

Negative Bin-
nomial

Continuous 
Proportion

Beta

Time to Event
Exponential,                 

Gamma

ANCOVA

ANOVA Regression

Linear Mixed Models

G-side R-side

Generalized 
Linear 

Models

Generalized 
Linear 
Mixed

Models

Logistic Regression

Linear Models



Common R packages for fitting LMs, GLMs, LMMs, GLMMS
(not exhaustive)

Linear Models: ANOVA, regression, Analysis of Covariance (ANCOVA)
• stats::lm()
• stats:aov() may provide a more convenient interface for ANOVA

Generalized Linear Models: logistic regression, Poisson regression, etc.
• stats::glm()

Linear Mixed Models:
• nlme::gls()
• nlme::lme()
• lme4::lmer()
• many others

Generalized Linear Mixed Models:
• lme4::glmer()
• others


